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Superpositional Quantum Network Topologies

Christopher Altman,1,4 Jaroslaw Pykacz,2

and Romàn R. Zapatrin3

We introduce superposition-based quantum networks composed of (i) the classical per-
ceptron model of multilayered, feedforward neural networks and (ii) the algebraic model
of evolving reticular quantum structures as described in quantum gravity. The main fea-
ture of this model is moving from particular neural topologies to a quantum metastruc-
ture which embodies many differing topological patterns. Using quantum parallelism,
training is possible on superpositions of different network topologies. As a result, not
only classical transition functions, but also topology becomes a subject of training. The
main feature of our model is that particular neural networks, with different topologies,
are quantum states. We consider high-dimensional dissipative quantum structures as
candidates for implementation of the model.
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1. INTRODUCTION

Quantum learning networks have been suggested to offer new domains for
quantum algorithm design (Behrman, Steck, and Skinner, 1999; Chrisley, 1993;
Ventura and Martinez, 1997). Machine learning-inspired architectures are self-
organizing, robust, and ideal for such tasks as pattern recognition and associative
processing. Contemporary quantum network models convey their advantage using
superposed quantum states on a fixed topological background. We suggest super-
posed quantum topologies as a novel approach to quantum neural networks, and
present a model of learning and evolving superposed quantum network topologies,
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or SQNTs. The mathematical basis of this model is predicated upon two existing
formalisms:

• Neural networks: The classical learning model of pattern recognition
(Dorogov, 2001; Rumelhart, Hinton, and Williams, 1986).

• Algebraic quantum foam model: The formalism which describes super-
posed and continuously evolving discrete structures (Raptis and Zapatrin,
2001; Zapatrin, 1998).

In order to show how our model can be implemented we consider multidimensional
quantum systems admitting highly degenerate states as described in (Savvidy,
2000) and the Bose–Einstein condensate as outlined in (Vitiello, 1995). An
overview of the model is arranged as follows. We begin with a classical percep-
tron model, namely, that of a multilayered feedforward, weakly connected neural
network. Then we extend this model, making it quantum by admitting the exis-
tence of superpositions of differing topological structures of neural networks using
Rota algebraic formalism (Zapatrin, 1998). As applied to describe the evolution
of reticular patterns of quantum spacetimes. This means that:

1. We admit that the topological structure of a perceiving entity can change.
2. We admit that these changes may be continuous.

At first sight these two requirements look contradictory: How can discrete struc-
tures evolve continuously? These requirements are reconciled in quantum me-
chanics. Along these lines we present the model of superposition based quantum
network topologies.

2. INTERLUDE ON RETICULAR QUANTUM
SPACETIME FORMALISM

Before coming to SQNT models in more detail and for the sake of self con-
sistency, we recall the necessary constructions from quantum mechanics used to
describe reticular quantum spacetime. The main feature of the quantum mechan-
ical description of a physical system is that we pass from configuration space
to a complex linear space, called the state space of the system. We shall con-
sider systems with finite configuration spaces, therefore their state spaces will be
finite-dimensional Hilbert spaces H = CN . Suppose we have a system whose con-
figuration space is {1, . . . , n}. According to quantum mechanics, it can be in pure
(that is, dispersion free) superposed state such as

|ψ〉 = cos α|1〉 + eiφ sin α|2〉 (1)

Quantum observables, that are, measuring apparatus are described by self-adjoint
operators in the state space of the system in question. The values of the observables
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are the eigenvalues of the operators; they are always real. Note that mutually
commuting (thus having the same eigenvectors) observables are associated with
the same measuring apparatus—they are interconverted just by relabelling the
pointer’s values. To specify an observable K, we consider a decomposition of the
unit operator by orthogonal projectors and associate a number with each projector.
In Dirac notation this reads:

K =
∑

i

ki |i〉〈i | (2)

2.1. Spatialization

The spatialization procedure was developed in (Raptis and Zapatrin, 2001).
for the purpose of describing spacetime foam. Its primary feature is to associate
discrete structures, rather than numerical values (2), with subspaces of the state
space. More specifically, in standard quantum mechanics the statespace is defined
as a Hilbert space—that is, a complex linear space with aninner product, H × H →
C. Each subspace of H can be associated only with its dimension as an integer. We
associate with each subspace C a disjoint graph, whose number of vertices equals
its dimension, dim C.

The spatialization procedure links some of the vertices, thus associating the
subspace C with richer structure than a cardinal number. The only requirement is
for H to be endowed with an associative product structure, rather than an inner
product. In some cases this structure already exists—for instance, when H is a
tensor product of two copies of the same state space H, that is H = H ⊗ H. The
associative product is defined on factorable vectors as

φ ⊗ φ′ · ψ ⊗ ψ ′ = 〈φ′, ψ〉 · φ ⊗ ψ ′

and then extended by linearity (this is nothing but a usual matrix product). The
spatialization procedure is briefly outlined as follows: with any directed acyclic
transitive graph G with N vertices its Rota Algebra is associated A, whose el-
ements are N × N matrices of the following form. They have zero entries aik

when the vertices i, k are not connected in the graph G. For instance, consider the
graphs

(3)
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For these examples, the appropriate Rota algebras take the following form




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗







∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ 0
0 0 0 ∗







∗ 0 ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 0 ∗


 (4)

For a detailed account of Rota algebras and the spatialization formalism supplied
with examples the reader is referred to Appendices A, B and (Raptis and Zapatrin,
2001; Zapatrin, 1998).

2.2. Neural Metastructures

The main feature of the proposal put forward in this paper is to shift from
a particular structure of neural network as perceptron to something different: a
metasystem whose states are perceptrons. This is accomplished as follows. Super-
posed quantum neural networks are themselves linear spaces rather than neural
networks. With each subspace of the state space of SQNT—which is its quantum
property, see (2) above—a particular neural network configuration is associated
using the above mentioned spatialization procedure. In Section 3 we suggest to
use the quantum features of SQNTs to enhance the performance of the main task
in neural networks, namely, their training.

Realistic physical candidates to implement SQNTs have already been
proposed. The first is based upon the Bose–Einstein condensate, on which a
quantum brain model has been suggested by G. Vitiello (Vitiello, 1995). A
second model has been suggested by G. Savvidy (Savvidy, 2000). Both have
the crucial property needed for our purposes, namely they have many individ-
ual degrees of freedom and admit superpositions. We emphasize that no ab ini-
tio association of states with graphs is needed, as graphs are automatically
produced as a consequence of the spatialization procedure. SQNT implemen-
tation can also be modelled classically: as demonstrated in (Werbos, 2002),
a broad class of quantum algorithms can be simulated on classical
systems.

3. NEURAL NETWORKS AND ROTA ALGEBRAS

One of the basic tasks of neural networks is to function as perceptrons, that
is to recognize signals for which we have no structural theory—for instance, to
recognize visual patterns. In this section we review the basic principles on which
perceptrons are based, their learning and training in classical setting and show
how Rota algebras introduced above emerge in their description. We shall deal
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with multilayered feedforward NNs, such as

that is, their nodes can be arranged in layers so that (i) no nodes in a given layer
communicate and (ii) the signals propagate only consecutively via layers. The state
of a given neural network is the set of values, numerical or vectorial, assigned to
its nodes. A time-step propagation changes the perceptron’s state so that the value
of a node i at time t + 1 depends on its own value and the values of nodes adjacent
to i at time t.

Besides their multilayered, high-dimensional structure the filtering and rec-
ognizing power of neural networks is based on the nonlinearity of their transition
functions. In some cases, in particular while dealing with stability or elasticity
issues, we may use linear approximations. This is exactly the case we explore
in this paper: optimal topological configurations are assumed to be robust under
small permutations (Dorogov, 2001).

3.1. Training

Initially one starts with a set of patterns for which the classification is known.
Usually by means of heuristic methods, the topological structure of the network
is chosen and then trained via input of known patterns and subsequent adjustment
of network parameters (transition functions). Output signals are correlated with
patterns from different classes to be well-separated with respect to certain criterion.
The most popular method to adjust transition functions is error backpropagation
(see, for instance, Rumelhart et al., 1986).

3.2. Performance

Signal propagation in the linear approximation can be viewed as a matrix
multiplication which reduces to a number of arithmetic operations. The more links
there are between neurons, the more computational resources are consumed by
the process of pattern recognition. In order for a neural network to be faster, we
should seek for sparser configurations.

Therefore, the criterion for ‘good matching’ should also take performance into
consideration. As an example we consider the approach of fast neural networks,
which are weakly connected multilayered feedforward neural networks (Dorogov,
2001). The idea of these networks grows from the FFT (fast Fourier transform).
When finding optimal configurations of such networks, we restrict the allowed
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links between neurons and force networks to be sparse. Note that in our setting
this requirement is followed automatically as we are confined by the dimensionality
of the state space H.

4. SUPERPOSITION-BASED TRAINING

The basic proposal of this paper is to replace training of particular neural
network configurations with training of superposed ones. This can be achieved in
the following steps:

(i) SQNT is treated as a system described by quantum mechanical formalism,
in our special case represented by a matrix algebra A. Note that the term
‘quantum’ here is a mere indication of the rules of behavior of the object
on which the SQNT is implemented, whatever be its ‘real’ nature.

(ii) Input signals are vectors from a representation space of the algebra A,
as are output signals. Connection weights are represented by the matrix
elements, and can further be represented by matrices of linear operators
consequent of the spatialization procedure.

(iii) Learning is a matching algorithm that selects a subset C of A for which
the criterion of matching between input and output signals is optimal. At
this step we obtain the optimal configuration on the metalevel.

(iv) In order to pass to a particular neural network structure, we consider a
subalgebra (rather than a subset) of A which is the nearest to the subset C.

Now let us dwell on the above issues. For the first step, an appropriate physical
system for SQNT to be implemented should be found. The main requirement which
it has to satisfy is to possess suffciently many degrees of freedom with controlled
access to them. The initial candidates for the sepurposes are entangled quantum
registers on which quantum computers are based. An alternative model can be
considered using the Bose–Einstein condensate (Vitiello, 1995).

So, we start with a quantum system S with suffciently many degrees of free-
dom. To implement (ii), we must draw the distinction between the classes of states
treated as states of the input register and between the states responsible for the
operations of multiplication. This step does not affect the overall performance of
the future perceptron, as it has to be done only once (this is analogous to building
a computer). The work of the SQNT is to evolve according to a prescribed evolu-
tion, starting from the initial state (=a pattern to recognize) to the final one (=its
classification identifier).

An algorithm seeking for best matching (iii) can be realized as follows. We
feed in a pattern from a given sample set (=given prescribed state) and then let
it evolve. The evolution is set in such a way that it realizes the multiplication
operation. To be more precise, we consider any available evolution Ut and then
label the states of SQNT in such a way that for the unit time δt the resulting action
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of Uδt would be multiplication of appropriate elements. This is possible due to the
arbitrary nature of labeling of eigenstates of operators (see Section 1).

The condition for learning to be successful is that the input vector from
a sample set should be unchanged. In physical terms, this means patterns from
the sample set should be eigenvectors for the energy operator responsible for the
evolution. Why do we require it? The point is that we would like our output signals
to be well separated—that is, they should be stable with respect to small variations
of the input vector. This, in turn, requires the states of the overall register (input,
output) to be orthogonal. If they are eigenstates of the generator of the evolution,
this holds automatically. We denote by C the appropriate eigenspace and call it
calculation subspace.

The last item (iv) is a kind of ‘classical correspondence principle’ in quantum
mechanics. SQNT operates as it is—namely, it undergoes quantum evolution—
but if we would like to represent (perhaps with some losses) its work in terms of
neural networks, we proceed in the following way. We deal with the calculation
subspace C of our state space, which we obtained as a result of the best matching
algorithm, and we have the evolution operator in our disposal which is interpreted
as multiplication.

The spatialization procedure can be applicable to C only if it is closed with
respect to the multiplication, while this requirement may not hold for eigenspaces
of the energy operator. That is why, following the lines of quantum mechanics,
we consider the nearest subalgebra to C and immediately interpret it as a neural
network. This suggestion is in full accordance with quantum measurement theory,
where the wavefunction of the system immediately ’collapses’ to an eigenstate of
the appropriate operator.

CONCLUDING REMARKS

Presently only a handful of quantum algorithms exist, and these are confined
to a limited set of specialized applications. Quantum learning architectures of-
fer the potential to expand this domain to a much broader class of functionality.
We have outlined the fundamentals of a quantum fast-training pattern recognition
model—superpositional quantum network topologies, or SQNT—which provides
a rich source for the development of a novel class of quantum algorithms. The dis-
tinguishing feature of our model lies in its ability to utilize coherent superposition
of unique topological configurations of neural networks.

We suggest two ways to implement our model in physical media based on
high-dimensional dissipative quantum systems (Savvidy, 2000; Vitiello, 1995).
Quantum simulation methods offer an immediate candidate for study of the model:
non-classical dynamics can be effciently simulated on ensembles of states of clas-
sical Turing machines ruled by second-order differential equations, see (Werbos,
2002). for more detail. It should be mentioned that although macroscopic physical
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systems are comprised of quantum components, quantum phenomena in the macro-
scopic realm are usually invisible due to averaging over a large number of degrees
of freedom. Nevertheless, the existence of macroscopic systems exhibiting quan-
tum properties cannot be neglected in many subdomains of the life sciences, es-
pecially in molecular biology (Aerts et al., 1993). For example, A. S. Davydov in
his book ‘Biology and Quantum Mechanics’ (Davydov, 1982). studied collective
soliton excitations in large protein molecules and applied them to such biological
phenomena as membrane transport, nerve impulse conduction, and muscle con-
traction. Extending beyond relevance to the current model, we suggest this could
be a potential explanation of the surprisingly high adaptation capabilities of living
organisms. Classical models of learning and response to continuously changing
environments require immense computational resources. We interpret this as a
signal that perhaps quantum models could be more effcient for this purpose.
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APPENDIX A: ROTA ALGEBRAS OF TRANSITIVE GRAPHS

A. 1. Rota Algebras in Dirac Notation

Let X be a reflexive transitive graph. For brevity a pair of nodes i, j of X
connected by an arrow i → j is said to be tending. Consider the linear space �

whose basis |i〉〈 j | is labelled by tending pairs i → j of nodes of X.

�(X ) =
{∑

i, jεX

|i〉〈 j | such that i → j

}
(A1)

In the sequel, when no confusion occurs, we omit the notation of the graph X in
parentheses and simply write

� = �(X )

Define the product on by setting it on its basic elements:

|i〉〈 j ||k〉〈l| =
{ |i〉〈l| , if j = k

0, otherwise

}
(A2)
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Note that |i〉〈l| in (6) is always well-defined since the graph X is assumed to be
transitive, that is why the existence of darts i → j and j → k always enables the
existence of i → k. The space with the product (6) is called the Rota algebra of the
topological space (X, →). These algebras were first introduced in (Rota, 1968).
in the context of combinatorial theory.

A. 2. The Matrix Representation of Rota Algebras

Given the Rota algebra. of a transitive graph X, its standard matrix represen-
tation is obtained by choosing the basis of � consisting of the elements of the
form |i〉〈k| = eik, with ik ranging over all tending pairs i → k of nodes of X. The
matrices eik (called matrix units) are defined as follows:

eik(m, n) =
{

1 m = i and n = k (provided i → k)
0 otherwise

(A3)

where eik(m, n) stands for the element in the m-th row and the n-th column of the
matrix eik . We can also extend the ranging to all pairs of elements of X by putting
eik ≡ for i → k. Then the product (6) reads:

eikei ′k ′ = δki ′eik ′

To specify a Rota algebra in the standard matrix representation we fix the template
matrix replacing the unit entries in the incidence matrix Iik of the graph X:

Iik =
{

1 i → k
0 otherwise

by wildcards ∗ ranging independently over all numbers. For instance, the algebra
associated with the two-node graph • → • has the the following template matrix

�(• → •) =
(∗ ∗

0 ∗
)

=
{(

a b
0 c

)
|a, b, c ∈ C

}
.

So, we see that any transitive graph can be described in terms of a finite dimensional
algebra (for further details we refer to (Zapatrin, 1998).

APPENDIX B: SPATIALIZATION PROCEDURE

Here we describe the spatialization procedure which associates a graph with
an arbitrary finite-dimensional algebra.
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B. 1. The Emergence of Nodes

Let us start with a given finite-dimensional associative (and non-commutative,
in general) algebra �. According to standard conceptions and methods of modern
algebraic geometry, as well as the general algebraic approach to physics, we in-
troduce the points of � as its irreducible representations (IRs). So, the first step of
the specialization procedure is creating (or finding) points of (which will become
nodes of the future graph):

{points} = {IRs} (B1)

B. 2. Standard Set with Non-standard Topology

When the first spatialization step in a standard way (9) is done we may wish to
proceed by connecting the set of nodes by arrows. This problem is mathematically
equivalent to equipping the set of points of the algebra by a topology. There
are standard recipes for this step as well like, say, the Zariski topology on the
prime spectrum of . Unfortunately, on finite-dimensional algebras this topology is
always discrete, which leaves us no chance to fit the above requirement of being
non-Hausdor (ie, not T2). In terms of graphs that means that the standard recipes
can not help us to create arrows. So, we are compelled to find another topology. For
these purposes the Rota topology is suggested (first it was introduced in (Zapatrin,
1998).

Let � be a finite-dimensional algebra. Denote by X the set of points of ,
each of which we shall associate with a prime ideal in �. Consider two points
(representations of �) i, jεX and denote by ker i, ker j their kernels. Both of them,
being kernels of representations, are two-sided ideals in �, in particular, subsets
of �, hence both of the following expressions make sense:

ker i ∩ ker j ⊂ � and ker i · ker j ⊂ �

the latter denoting the product of subsets of � : ker i · ker j = {a ∈ �|∃u ∈
ker i , v ∈ ker j : uv = a} Since ker i, ker j are ideals, we always have the inclu-
sion ker i · ker j ⊆ ker i ∩ ker j which may be strict or not. Define the relation
∝ on X as follows:

i ∝ j if and only if ker j �= ker i ∩ ker j (B2)

Then the Rota topology is the weakest one in which i ∝ j implies the convergence
i → j of the point i to the point j. Explicitly, the necessary and sufficient conditions
for i to converge to j in the Rota topology reads:

i → j if and only if ∃k0,···, kt ,···, kn | k0 = j ; kt−1 ∝ kt (B3)

This operation is called the transitive closure of the relation (Note that, in general,
the Rota topology can be defined on any set of ideals.
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It was proved by Stanley (Stanley, 1986) that in that particular case when is the
Rota algebra of a reflexive transitive graph, then its spatialization X endowed with
the Rota topology (11) is homeomorphic to the initial topological space. However,
in general if we have two reflexive transitive graphs and an arrow-preserving
mapping between them, their Rota algebras may not be homomorphic. Recently,
‘good’ classes of reflexive transitive graphs topological spaces were discovered
for which the transition to Rota algebras is functorial (Breslav and Zapatrin, 2000;
Zapatrin, 2001). In our approach, it supports the existence of the classical limit.
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